Microwave quantum optics with an artificial atom in one-dimensional open space

نویسندگان

  • Io-Chun Hoi
  • C M Wilson
  • Göran Johansson
  • Joel Lindkvist
  • Borja Peropadre
  • Tauno Palomaki
  • Per Delsing
چکیده

We address recent advances in microwave quantum optics with artificial atoms in one-dimensional (1D) open space. This field relies on the fact that the coupling between a superconducting artificial atom and propagating microwave photons in a 1D open transmission line can be made strong enough to observe quantum coherent effects, without using any cavity to confine the microwave photons. We investigate the scattering properties in such a system with resonant coherent microwaves. We observe the strong nonlinearity of the artificial atom and under strong driving we observe the Mollow triplet. By applying two resonant tones, we also observe the Autler–Townes splitting. Exploiting these effects, we demonstrate two quantum devices at the singlephoton level in the microwave regime: the single-photon router and the photonnumber filter. These devices provide important steps toward the realization of an on-chip quantum network. 3 Authors to whom any correspondence should be addressed. Content from this work may be used under the terms of the Creative Commons Attribution-NonCommercialShareAlike 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. New Journal of Physics 15 (2013) 025011 1367-2630/13/025011+15$33.00 © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantization of electromagnetic fields in the presence of a spherical semiconductor quantum dot and spontaneous decay of an excited atom doped in this nanostructure

In this paper we consider electromagnetic field quantization in the presence of a dispersive and absorbing semiconductor quantum dot. By using macroscopic approach and Green's function method, quantization of electromagnetic field is investigated. Interaction of a two-level atom , which is doped in a semiconductor quantum dot, with the quantized field is considered and its spontaneous emission ...

متن کامل

THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Quantum optics with artificial atoms

Quantum optics is the study of interaction between atoms and photons. In the eight papers of this thesis, we study a number of systems where artificial atoms (here, superconducting circuits emulating the level structure of an atom) enable us to either improve on known concepts or experiments from quantum optics with natural atoms, or to explore entirely new regimes which have not been possible ...

متن کامل

ar X iv : 1 10 1 . 55 42 v 1 [ qu an t - ph ] 2 8 Ja n 20 11 Dynamics of coherent and incoherent emission from an artificial atom in a 1 D space

We study dynamics of an artificial two-level atom in an open 1D space by measuring evolution of its coherent and incoherent emission. States of the atom – a superconducting flux qubit coupled to a transmission line – are fully controlled by resonant excitation microwave pulses. The coherent emission – a direct measure of superposition in the atom – exhibits decaying oscillations shifted by π/2 ...

متن کامل

Circuit QED: Recent Results in Quantum Optics with Superconducting Circuits

Circuit QED1 is an approach for studying quantum optics in a superconducting integrated circuit. By combining a one-dimensional transmission-line cavity that stores microwave photons and a superconducting qubit that plays the role of an artificial atom, one can easily enter the strong coupling limit of cavity QED. In recent experiments, we attain couplings that are several percent of the qubit ...

متن کامل

Designing frequency-dependent relaxation rates and Lamb shifts for a giant artificial atom

In traditional quantum optics, where the interaction between atoms and light at optical frequencies is studied, the atoms can be approximated as pointlike when compared to the wavelength of light. So far, this relation has also been true for artificial atoms made out of superconducting circuits or quantum dots, interacting with microwave radiation. However, recent and ongoing experiments using ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013